1=(-6c^2+8c+6)/(-2)

Simple and best practice solution for 1=(-6c^2+8c+6)/(-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=(-6c^2+8c+6)/(-2) equation:



1=(-6c^2+8c+6)/(-2)
We move all terms to the left:
1-((-6c^2+8c+6)/(-2))=0
We multiply all the terms by the denominator
-((-6c^2+8c+6)+1*(-2))=0
We calculate terms in parentheses: -((-6c^2+8c+6)+1*(-2)), so:
(-6c^2+8c+6)+1*(-2)
We add all the numbers together, and all the variables
(-6c^2+8c+6)-2
We get rid of parentheses
-6c^2+8c+6-2
We add all the numbers together, and all the variables
-6c^2+8c+4
Back to the equation:
-(-6c^2+8c+4)
We get rid of parentheses
6c^2-8c-4=0
a = 6; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·6·(-4)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*6}=\frac{8-4\sqrt{10}}{12} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*6}=\frac{8+4\sqrt{10}}{12} $

See similar equations:

| 25=9x-25 | | -2+4x+30=90 | | -2+4x+30=180 | | 3n–7+2n=8n+11. | | d(d–8)=0 | | 8/15=m/6 | | 12+9/x=66 | | -18=3w-3 | | 20+25=145+x | | -4(2x-1)-2(-2x-6)=-24 | | 53/7x=266 | | -2(4x+2)-(2x+6)=10 | | a^2+22a=-85 | | -3x+2x=8+5 | | -3(3x+2)-(x+2)=22 | | 9n+11=38 | | ?-3(3x+2)-(x+2)=22 | | -3(4x+1)+2(3x-2)=-49 | | 3(m-2)+7=-26 | | 5t-7t=4 | | -6(2x+1)-(-2x+2)=-28 | | 30+4x-2=90 | | 6x-7=3×-61 | | 0.8t^2-7t=0 | | (2x-6)(x+3)=180 | | 175.84=2(3.14)5 | | 18=2(v+4)-7v | | 2=-6c^2+8c+6 | | (4x-7)(x+12)=180 | | -32=5(x-8)-7x | | 30+4x-2=180 | | 13=3(w+7)-7w |

Equations solver categories